sábado, 17 de noviembre de 2007

MAURITS CARNELIS ESCHER




Maurits Cornelis Escher nació en 1898 en Leeuwarden (Países Bajos), siendo el hijo más joven de un ingeniero hidráulico. Su profesor F.W. van der Haagen le enseñó la técnica de los grabados en linóleo y fue una gran influencia para el joven Escher.




No fue precisamente un estudiante brillante, y sólo llegó a destacar en las clases de dibujo. En 1919 y bajo presión paterna empieza los estudios de arquitectura en la Escuela de Arquitectura y Artes Decorativas de Haarlem, estudios que abandonó poco después para pasar como discípulo de un profesor de artes gráficas, Jessurum de Mesquitas. Adquirió unos buenos conocimientos básicos de dibujo, y destacó sobremanera en la técnica de grabado en madera, la cual llegó a dominar con gran perfección.




Entre 1922 y 1935 se traslada a Italia donde realiza diversos bocetos y grabados principalmente de temas paisajísticos. Abandona Italia debido al clima político de aquellas fechas, trasladándose a Suiza, y pasó algunos años en Suiza, cuyo clima le resultó muy desagradable y poco inspirador. Añora el sur de Italia y lo frecuenta repetidas veces.
También viaja a España, y en particular a Granada. Visita dos veces la Alhambra, la segunda vez de forma más detenida, copiando numerosos motivos ornamentales. Lo que aprendió allí tendría fuertes influencias en muchos de sus trabajos, especialmente en los relacionados con la partición regular del plano y el uso de patrones que rellenan el espacio sin dejar ningún hueco.




En 1941 se muda a Baarn (Países Bajos), después de una estancia difícil en Bélgica (estamos en plena 2ª Guerra Mundial). Parece que debido al habitual mal tiempo de esa región, donde los días soleados se consideran una bendición, es por lo que abandona los motivos paisajísticos como modelos y se centra más en su propia mente, encontrando en ella una potentísima fuente de inspiración.




Hasta 1951 vivió básicamente dependiendo económicamente de sus padres. A partir de entonces fue cuando comenzó a vender sus grabados y obtener un buen dinero por ellos. Esto le permitió vivir sus últimos años con una economía personal excelente. Generalmente hacía copias de las litografías y grabados por encargo. También hizo por encargo diseños de sellos, portadas de libros, y algunas esculturas en marfil y madera. En cierto modo le resulta gratificante y a la vez fácil, y se admiraba de tener en su taller una especie de «máquina de fabricar billetes» reproduciendo sus propias obras.
Normalmente no usaba elementos de obras anteriores en las nuevas nuevas, excepto en los encargos especiales. Hacía, por ejemplo, esculturas en madera basadas en algunos de sus dibujos, y para algunas peticiones especiales reciclaba parte de las ideas y elementos de obras anteriores.Quizás por ello en este período su producción sea tan fructífera y regular, y sólo se verá interrumpida por la operación que sufrió en 1962, consecuencia de su debilitada salud.



En 1969 con 71 años realiza su grabado "Serpientes" donde demuestra sus facultades a pesar de su avanzada edad.

En 1970 se traslada a la Casa Rosa Spier de Laren, al norte de Holanda, donde los artistas podían tener estudio propio. En esa ciudad fallece dos años más tarde, en 1972.





OBRA:


Grabados en madera, y también unos 2.000 dibujos y borradores. De muchos existen decenas de reproducciones, cientos e incluso miles de otros. Al final de su carrera destruyó algunas de las planchas para que no se realizaran más reproducciones de originales. También existen estudios y borradores de muchas de sus obras, en ocasiones también varias versiones de algunas de ellas. Muchas de su obras se vendieron masivamente poco después de su muerte y están esparcidas por el mundo. Un grupo importante está expuesto de forma permanente en el Museo Escher en La Haya, Holanda.




El análisis de sus obras, tal y como definió Bruno Ernst, uno de sus biógrafos, permite clasificarlas básicamente en tres temas y diversas categorías:

La estructura del espacio – incluyendo paisajes, compenetración de mundo y cuerpos matemáticos.

La estructura de la superficie – Metamorfosis, ciclos y aproximaciones al infinito.

La proyección del espacio tridimensional en el plano – Representación pictórica tradicional, perspectiva y figuras imposibles.



Tomado de WIKIPEDIA

domingo, 4 de noviembre de 2007

TEOREMA DE LA INCOMPLETITUD DE GÖDEL

Gödel, y Einstein, grandes amigos, dedujeron leyes y teoremas, que cambiaron la visión científica del mundo hasta ese momento.

En lógica matemática, los teoremas de la incompletitud de Gödel son dos célebres teoremas demostrados por Kurt Gödel en 1930.


Simplificando, el primer teorema afirma:

En cualquier formalización consistente de las matemáticas que sea lo bastante fuerte para definir el concepto de números naturales, se puede construir una afirmación que ni se puede demostrar ni se puede refutar dentro de ese sistema.
Este teorema es uno de los más famosos fuera de las matemáticas, y uno de los peor comprendidos. Es un teorema en lógica formal, y como tal es fácil malinterpretarlo. Hay multitud de afirmaciones que parecen similares a este primer teorema de incompletud de Gödel, pero que en realidad no son ciertas. Éstas se comentan en Malentendidos en torno a los teoremas de Gödel.

El segundo teorema de la incompletitud de Gödel, que se demuestra formalizando parte de la prueba del primer teorema dentro del propio sistema, afirma:

Ningún sistema consistente se puede usar para demostrarse a sí mismo.


Este resultado fue devastador para la aproximación filosófica a las matemáticas conocida como el programa de formalización Hilbert. David Hilbert propuso que la consistencia de los sistemas más complejos, tales como el análisis real, se podía probar en términos de sistemas más sencillos.




Finalmente, la consistencia de todas las matemáticas se podría reducir a la aritmética básica. El segundo teorema de la incompletud de Gödel demuestra que la aritmética básica no se puede usar para demostrar su propia consistencia, y por lo tanto tampoco puede demostrar la consistencia de nada más fuerte.



Significado de los teoremas de Gödel


Los teoremas de Gödel son teoremas en lógica de primer orden, y deben entenderse en ese contexto. En lógica formal, tanto las afirmaciones matemáticas como las demostraciones se escriben en un lenguaje simbólico en el que se puede comprobar mecánicamente la validez de las pruebas. De este modo no puede haber ninguna duda de que un teorema se deduce de nuestra lista inicial de axiomas. En teoría, este tipo de pruebas se puede verificar con un ordenador, y de hecho hay programas que lo hacen (se llama razonamiento automatizado).



Para poder realizar este proceso se necesita saber cuáles son estos axiomas. Se puede partir de un conjunto finito de axiomas, como en la geometría euclídea, o más en general se puede permitir un número infinito de axiomas con el requisito de que dada una afirmación se pueda verificar mecánicamente si ésta es uno de los axiomas. Aunque pueda sonar extraño el uso de un número infinito de axiomas, esto es precisamente lo que se hace habitualmente con los números naturales, los axiomas de Peano.


El primer teorema de la incompletitud de Gödel demuestra que cualquier sistema que permita definir los números naturales es necesariamente incompleto: contiene afirmaciones que ni se pueden demostrar ni refutar.





La existencia de un sistema incompleto no es en sí particularmente sorprendente. Por ejemplo, si se elimina el postulado del paralelismo de la geometría euclídea se obtiene un sistema incompleto. Un sistema incompleto puede significar simplemente que no se han descubierto todos los axiomas necesarios.



Lo que mostró Gödel es que en la mayoría de los casos, como en la teoría de números o en análisis real, nunca se puede descubrir el conjunto completo de axiomas. Cada vez que se añada un nuevo axioma siempre habrá otro que quede fuera de alcance.



También se puede añadir un conjunto infinito de axiomas. Por ejemplo, todas las afirmaciones verdaderas sobre los números naturales, pero esa lista no será un conjunto recursivo. Dada una afirmación cualquiera, no habrá forma de saber si es un axioma en el sistema o no. Dada una prueba no habrá en general una manera de verificar que esa prueba es válida.



El teorema de Gödel tiene otra interpretación en el contexto de la informática. En lógica de primer orden, los teoremas son recursivamente enumerables: se puede construir un programa de ordenador que terminará por dar una demostración válida. Sin embargo, no cumplen la propiedad más fuerte de ser un conjunto recursivo: no se puede construir un programa que dada una afirmación cualquiera determine si ésta es cierta o no.




Muchos lógicos piensan que los teoremas de incompletitud de Gödel asestaron un mazazo fatal al programa de formalización de Hilbert que apuntaba a un formalismo matemático universal. La postura aceptada generalmente es que fue el segundo teorema el que asestó este golpe. Algunos sin embargo piensan que fue el primero, e incluso hay quien piensa que ninguno de ellos lo hizo.




TOMADO DE WIKIPEDIA